Biography
- President and Chief Research Officer, Stanley Manne Children’s Research Institute
- Attending Physician, Infectious Disease, Ann & Robert H. Lurie Children’s Hospital of Chicago
- Children’s Research Fund Chair in Basic Science
- Professor of Pediatrics (Infectious Diseases) and MicrobiologyImmunology, Northwestern University Feinberg School of Medicine
See Lurie Children's Provider Profile
Patrick C. Seed, MD, PhD, is President and Chief Research Officer at Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago. He is a Professor of Pediatrics and Microbiology–Immunology at Northwestern University Feinberg School of Medicine. In addition, he is an Attending Physician in the Division of Pediatric Infectious Diseases in the Department of Pediatrics and Past Division Head. Dr. Seed's lab aims to translate molecular knowledge of microbial/microbiome genetics, physiology, and pathogenesis into diagnostics and treatments for a broad range of pediatric diseases. The Seed Research Team combines human clinical studies, conventional and germ-free models, molecular genetics, immunology, biochemistry, structural biology, high-dimensional data computational analysis, and complementary 'omics technologies including genomics, metagenomics, transcriptomics, metatranscriptomics, and metabolomics to understand complex systems. The lessons learned from these molecular studies are used to design new diagnostics and therapeutics.
Education and Background
- Fellowship, Washington University School of Medicine 2005
- Chief Resident, University of Michigan School of Medicine 2002
- Residency, University of Michigan School of Medicine 2001
- MD, University of Rochester, School of Medicine 1998
- PhD, University of Rochester 1996
- BS, Bowdoin College 1990
Research Highlights
THE ROLE OF CORYNEBACTERIUM SPECIES IN RESPIRATORY HEALTH
In this project, we dissect the pangenome of the genus Corynebacterium and use molecular biology, cellular assays , and animal models to identify the mechanisms through which Corynebacterium spp. compete with other respiratory bacteria and alter the host response to inflammation and infection. Bacterial pneumonia remains one of the leading global causes of death among young children. The respiratory microbiota is hypothesized as a mediator of respiratory health and exclusion of bacterial pneumonia pathogens.
We and others previously mapped the infant nasopharyngeal microbiota and identified an inverse relationship between the presence of Corynebacterium spp. and respiratory pathogens such as Streptococcus pneumoniae. However, Corynebacterium spp. remain poorly understood and their mechanisms of interacting with the host and other microbes is poorly described. In collaboration with Dr. Matthew Kelly, we have assembled a growing sample collection from the human nasopharynx and culture collection including diverse corynebacteria. Using a combination of genomics, metagenomics, transcriptomics, respiratory cell culture models, molecular genetics, biochemistry, and murine models, we are identifying the diverse mechanisms through which Corynebacterium spp. attach and engage host epithelial cells, augment immune and inflammatory responses, and directly and indirectly inhibit other respiratory organisms including pneumonia pathogens.
THE PEDIATRIC OBESITY MICROBIOME & METABOLISM STUDY (POMMS)
In collaboration with investigators at Duke University, we are investigating the childhood and adolescent gut microbiome and its relationship to pediatric overweight and obesity. We predicted that children with obesity have different microbiota and metabolic signatures than healthy weight children and adults with obesity.
We conducted a prospective, longitudinal study of over 300 youth, performing marker gene and shotgun metagenomics and metabolomic profiling. We are conducting integrative data modelling to determine the relationship between clinical measures, microbiome, and metabolic factors. We are conducting model system studies to identify causal relationships between microbial communities, metabolic states, and mechanistic pathways to corroborate the human associative studies. Together, we seek to understand how the earlier stages of obesity and metabolic plasticity are established prior to the development of fixed, late stage adult disease. Insights into the early disease stages may inform effective interventions to alter and reverse the obesity and associated metabolic disturbances.
FOOD ALLERGY OUTCOMES RELATED TO WHITE AND AFRICAN AMERICAN RACIAL DIFFERENCES (FORWARD)
In collaboration with Dr. Ruchi Gupta and the Center for Food Allergy and Asthma Research at Northwestern University, we are using shotgun metagenomics and high dimensional data analysis to identify differences in microbiome composition by racial identify among children with food allergies. With rich clinical, social, nutritional, and environmental data and serial fecal samples. the study will find correlates between food allergy type, severity, race, and clinical parameters.
Featured Grants
Targeting the Meta-organismal Butyrate Pathway to Prevent Arterial Restenosis after Vascular Surgery
NHLBI
04/01/2021 → 03/31/2026
Surveillance, Transmission Dynamics, and Disparities of COVID-19 among Chicago Children
Walder Foundation
10/01/2020 → 09/30/2022
Food Allergy Outcomes Related to White and African American Racial Differences (FORWARD)
NIAID
05/11/2017 → 04/30/2022
Successful Clinical Response in Pneumonia Therapy (SCRIPT) Systems Biology Center
NIAID
01/01/2017 → 12/31/2022
A Comprehensive Research Resource to Define Mechanisms Underlying Microbial Regulation of Host Metabolism in Pediatric Obesity and Obesity Targeted Therapeutics
NIDDK
09/25/2016 → 08/31/2022